15 research outputs found

    Model preview control in multi-contact motion-application to a humanoid robot

    Full text link
    International audienceOur work builds largely on Nagasaka's stabilizer in multi-contact motion [1]. Using a sequence of contact stances from an offline multi-contact planner, we use first a Model Predictive Controller to generate a dynamic trajectory of the center of mass, then a whole-body closed-loop model-based controller to track it at best. Relatively to Nagasaka's work, we allow frame changes of the preferred force, provide a heuristic to compute the timing of the transition from purely geometrical features and investigate the synchronization problem between the reduced-model preview control and the whole-body controller. Using our framework, we generate a wide range of 3D motions, while accounting for predictable external forces, which includes transporting objects. Simulation scenarios are presented and obtained results are analyzed and discussed

    Vertical ladder climbing by the HRP-2 humanoid robot

    Full text link
    International audienceWe report the results obtained from our trials in making the HRP-2 humanoid robot climb vertical industrial-norm ladders. We integrated our multi-contact planner and multi-objective QP control as basic components. First, a set of contacts to climb the ladder is planned off-line and provided as an input for a finite state machine that sequences tasks to be realized by our multi-objective model-based QP in closed-loop control. The trials we made revealed that hardware changes are to be made on the HRP-2, and the software has to be made more robust. Yet, we confirmed that HRP-2 has power capability to climb real industrial ladders, such as those found in nuclear power plants and large scale manufacturings (e.g. airliners, shipyards and buildings)

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age: Systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable antenatal identification of pre-eclampsia and small for gestational age is crucial to judicious allocation of monitoring resources and use of preventative treatment with the prospect of improving maternal/perinatal outcome. The purpose of this systematic review was to determine the accuracy of five serum analytes used in Down's serum screening for prediction of pre-eclampsia and/or small for gestational age.</p> <p>Methods</p> <p>The data sources included Medline, Embase, Cochrane library, Medion (inception to February 2007), hand searching of relevant journals, reference list checking of included articles, contact with experts. Two reviewers independently selected the articles in which the accuracy of an analyte used in Downs's serum screening before the 25<sup>th </sup>gestational week was associated with the occurrence of pre-eclampsia and/or small for gestational age without language restrictions. Two authors independently extracted data on study characteristics, quality and results.</p> <p>Results</p> <p>Five serum screening markers were evaluated. 44 studies, testing 169,637 pregnant women (4376 pre-eclampsia cases) and 86 studies, testing 382,005 women (20,339 fetal growth restriction cases) met the selection criteria. The results showed low predictive accuracy overall. For pre-eclampsia the best predictor was inhibin A>2.79MoM positive likelihood ratio 19.52 (8.33,45.79) and negative likelihood ratio 0.30 (0.13,0.68) (single study). For small for gestational age it was AFP>2.0MoM to predict birth weight < 10<sup>th </sup>centile with birth < 37 weeks positive likelihood ratio 27.96 (8.02,97.48) and negative likelihood ratio 0.78 (0.55,1.11) (single study). A potential clinical application using aspirin as a treatment is given as an example.</p> <p>There were methodological and reporting limitations in the included studies thus studies were heterogeneous giving pooled results with wide confidence intervals.</p> <p>Conclusion</p> <p>Down's serum screening analytes have low predictive accuracy for pre-eclampsia and small for gestational age. They may be a useful means of risk assessment or of use in prediction when combined with other tests.</p

    Programming humanoid robots for locomotion and manipulation with experiments

    No full text
    Cette thèse propose une approche pour générer un mouvement corps complet avec contacts non coplanaires, permettant à un robot de se déplacer dans un environnement, de manipuler des objets complexes ou de collaborer avec différents agents. Les méthodes développées dans cette thèse tentent de prendre en compte une grande variété de robots, de l'humanoïde au manipulateur à base fixe en passant par les objets sous actionnés. En premier lieu, nous abordons le problème du choix des positions des points de contacts qu'un robot sous-actionné doit prendre pour se déplacer dans l'environnement. Nous calculons, en un seul problème d'optimisation non-linéaire, une séquence de postures qui satisfait une séquence de contacts donnés. Cette formulation permet de trouver la position des contacts optimale, car le choix de la position d'un contact d'une posture va prendre en compte les postures précédentes et suivantes. Elle permet aussi d'effectuer des tâches pour certaines postures qui prendront en compte l'aspect prioritaire du déplacement. Nous introduisons ensuite une méthode de génération de mouvement qui, en se basant sur la programmation quadratique, permet de résoudre le problème de géométrie inverse et de la dynamique inverse pour un robot à base fixe ou mobile, tout en satisfaisant des contraintes d'égalités et d'inégalités.Cette génération de mouvement est assez rapide pour fonctionner à la vitesse de la boucle de contrôle des robotsHRP2-10 et HRP4, et peut donc être utilisé en temps réel. À l'aide d'une machine à état, nous transformons la séquence de postures calculée à priori en une série de tâches à effectuer par le générateur de mouvement, ce qui permet à notre robot de se déplacer dans un environnement complexe. Nous étendons alors notre méthode de génération de mouvement pour calculer la commande d'un nombre arbitraire de robots. Cette extension nous permet de gérer des tâches de manipulation d'objets complexes, de collaboration entre plusieurs agents et de mouvement dans un environnement dynamique. Nous pouvons aussi spécifier directement les tâches dans le repère de l'objet manipulé pour faciliter l'élaboration de notre consigne. Dans l'optique de valider cette méthode sur un robot réel, nous formulons le problème d'estimation des paramètres inertiels d'un objet manipulé grâce à l'algèbre vectorielle spatiale. Finalement, nous validons nos travaux sur les robots HRP2-10 et HRP4. Sur le premier robot, nous validons la génération de posture et la génération de mouvement mono-robot sur le scénario demonté d'une échelle verticale aux normes industrielles. La manipulation d'objets et l'estimation des paramètres inertiels sont validées par la suite sur le robot HRP4.This PhD proposes a whole body motion generation approach with non coplanar contacts that allowsa robot to move in an environment, manipulate complex objects or collaborate with differentagents.Methods developed in this PhD try to manage many kinds of robots, from the humanoid to thefixed base manipulator and also handling underactuated objects.Firstly, we address the problem contacts positioning that an underactuated robot should taketo move in its environment.We compute in one non-linear optimization problem a sequence of postures that fulfill aninputed contact list. This formulation allows to find the optimal contact placement regardingprevious and next stances. It also allows to execute a task for some posture while taking into accountthe priority of the motion.Next, we introduce a motion generation method that uses quadratic programming to solveinverse kinematics and dynamics problems for a fixed or mobile base robot under equality andinequality constraints.This motion generation is fast enough to fit the HRP2-10 and HRP4 control loop andcan be used in real-time.With a finite state machine we turn the posture sequence into a list of tasks that should beexecuted by the motion generation to allow a robot to move in a complex environment.We extend this motion generation scheme to compute the motion of an arbitrary number of robots.This extension allows us to manage complex object manipulation tasks, multi-agent collaboration andmotion in a dynamic environment. We can also specify a task in the manipulated object frameto ease motion design.To validate this method on a real robot, we formulate inertial parametersestimation of manipulated objects with spatial vector algebra.Finally, we validate our works on the HRP2-10 and HRP4 robot. On the first one,we validate the posture and mono-robot motion generation on a scenario where the robot climbs anindustry standard vertical ladder.On the second one, we validate object manipulation and inertial parameters estimation

    Multi-Character Physical and Behavioral Interactions Controller

    No full text

    Multi-robot and task-space force control with quadratic programming

    No full text
    We extend the task-space multi-objective controllers that write as quadratic programs (QP) to handle multi-robot systems as a single centralized control. The idea is to assemble all the 'robots' models and their interaction task constraints into a single QP formulation. By multi-robot we mean that whatever entities a given robot will interact with (solid or articulated systems, actuated or not or partially, fixed-base or floating-base), we model them as robots and the controller computes the state of the overall system and their interaction forces in a physically consistent way. By doing so, the tasks specification simplifies substantially. At the heart of the interactions between the systems is the contact forces: we provide methodologies to achieve reliable force tracking with our multi-robot QP controller. The approach is assessed with a large panel of experiments on real complex robotic platforms (full-size humanoid, dexterous robotic hand, fixed-base anthropomorphic arm), performing whole-body manipulation, dexterous manipulation and robot-robot co-manipulation of rigid floating objects and articulated mechanisms such as doors, drawers, boxes, or even smaller mechanisms such as a spring-loaded click pen. The implementation code of the controller is made available in open source

    Quadratic Programming for Multirobot and Task-Space Force Control

    No full text
    International audienceWe have extended the task-space multiobjective controllers that write as quadratic programs (QPs) to handle multirobot systems as a single centralized control. The idea is to assemble all the “robots” models and their interaction task constraints into a single QP formulation. By multirobot, we mean that whatever entities a given robot will interact with (solid or articulated systems, actuated, partially or not at all, fixed-base or floating-base), we model them as clusters of robots and the controller computes the state of each cluster as an overall system and their interaction forces in a physically consistent way. By doing this, the tasks specification simplifies substantially. At the heart of the interactions between the systems are the contact forces; methodologies are provided to achieve reliable force tracking by our multirobot QP controller. The approach is assessed by a large panel of experiments on real complex robotic platforms (full-size humanoid, dexterous robotic hand, fixed-base anthropomorphic arm) performing whole-body manipulations, dexterous manipulations, and robot-robot comanipulations of rigid floating objects and articulated mechanisms, such as doors, drawers, boxes, or even smaller mechanisms like a spring-loaded click pen

    Quadratic Programming for Multirobot and Task-Space Force Control

    No full text
    corecore